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ABSTRACT
When working with user data providing well-defined privacy guar-

antees is paramount. In this work, we aim to manipulate and share

an entire sparse dataset with a third party privately. In fact, differen-

tial privacy has emerged as the gold standard of privacy, however,

when it comes to sharing sparse datasets, e.g. sparse networks, as

one of our main results, we prove that any differentially private

mechanism that maintains a reasonable similarity with the initial

dataset is doomed to have a very weak privacy guarantee. In such

situations, we need to look into other privacy notions such as k-
anonymity. In this work, we consider a variation of k-anonymity,

which we call smooth k-anonymity, and design simple large-scale

algorithms that efficiently provide smooth k-anonymity. We further

perform an empirical evaluation to back our theoretical guaran-

tees and show that our algorithm improves the performance in

downstream machine learning tasks on anonymized data.

ACM Reference Format:
Alessandro Epasto, Hossein Esfandiari, Vahab Mirrokni, Andres Munoz

Medina, and Sergei Vassilvitskii. 2023. SmoothAnonymity for Sparse Graphs.

In Proceedings of ACM Conference (Conference’17).ACM, New York, NY, USA,

9 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
In fact, when working with user data, maintaining user privacy is

absolutely essential. In this work we study a situation where we

intend to share an entire (manipulated) dataset, without violating

user privacy. Then the dataset might be used by the public for sev-

eral different purposes. Hence, to measure the accuracy regardless

of the downstream task, we use a general purpose metric to mea-

sure the similarity of the initial dataset with the shared dataset. To

measure the privacy there are a large body of work that attempt

to provide formal privacy measures. At a high level, there are two

distinct approaches to quantifying privacy, differential privacy and

k-anonymity.
Differential privacy is a property of a data processing algorithm

and it ensures that small changes in input (typically the presence

or absence of any individual user) lead to minimal changes in the

output. All differentially private algorithms are randomized, and

the uncertainty introduced by the randomization provides a layer
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of protection. On the other hand, k-anonymity is a property of the

dataset. To make a dataset k-anonymous one either generalizes or

removes data that is identifiable, so that in the final dataset any

information is shared by at least k distinct users. Both approaches

have their own pros and cons, which we briefly discuss next. (We

defer the formal definitions to Section 3.)

The main advantage of differential privacy is that the output of

a differentially private algorithm remains such even in the face of

arbitrary post-processing by an adversary armed with additional

side information about the users. This is one reason why it has

emerged as the gold standard of privacy. However, as we share

more information the differential privacy measure gets weaker. In

this work we prove that sharing sparse binary matrices with differ-

ential privacy guarantees is infeasible (See Theorem 4.3). Roughly

speaking, we prove that any differentially private algorithm either

provides a very weak privacy guarantee, or significantly changes

the dataset, destroying the underlying signal.

On the other hand, k-anonymity [34] is a popular pre-processing

technique that can be used to provide some level of privacy.Whilek-
anonymity can be vulnerable to certain attacks [32], it still provides

meaningful guarantees when adversaries have limited access to side

information [6]. Moreover, in cases where a data analyst cannot

withstand noise, it still represents a formal way to give privacy pro-

tections. Making a dataset k-anonymous while best preserving util-

ity is an NP-hard problem [2]. Current approximation algorithms

offer the guarantee of removing at most O(log(k)) times more el-

ements than that of an optimal solution, however, such a bound

is vacuous when the optimal solution has to remove a constant

fraction of the dataset (or anything smaller than a 1 −O
(

1

log(k )

)
fraction). In those cases the algorithm that just returns a null dataset

achieves the same guarantee.

In this work, we strive to design an approach for sharing a binary

matrix, while respecting the privacy of the users. In order to do this

we study a variant of k-anonymity (called smooth-k-anonymity).

Then we provide a polynomial-time approximation algorithm for

smooth-k-anonymity in binary matrices and in theory improve

the approximation guarantees of the state of the art results for

k-anonymization.

In the binary matrix representation, each row represents the

data of one user and each column corresponds to a feature, and if

the user u has the feature f , element (u, f ) in the matrix is 1. This

representation captures the following common setups:

Bipartite Graphs: The nodes of one side correspond to the users

and the nodes of the other side corresponds to the features. If user

u has feature f , there is an edge between u and f .
User Lists: We have a collection of lists of users, and each list is

associated with a feature. If user u has feature f , user u exists in

the list associated with f .

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Points in a Binary Space: Each user is associated with a point.

The coordinates of the point are equivalent to the respective row

in the matrix representation.

2 RELATEDWORK
The problem of anonymizing data is very well studied. One of the

first techniques for anonymizing data sets was k-anonymity [34].

This notion was intended for tabular data where each row corre-

sponds to a user and each column corresponds to a particular fea-

ture. The authors define k-anonymity in terms of quasi-identifiers.

That is, columns in the data set that, combined, could single out a

user. A k-anonymous dataset is one where every user is indistin-

guishable from k-other users with respect to the quasi-identifier

set only (that means that the columns not corresponding to quasi-

identifiers are not anonymized). Other works have improved upon

this definition by enforcing other restrictions such as requiring

l-diversity [25] or t-closeness [22] for non quasi-identifiers, on top

of k-anonymity for quasi-identifiers. The choice of quasi-identifiers

is crucial since an attacker with just a small amount of information

about a user could de-anonymize a dataset [28].

The majority of work on k-anonymity has been focused on

finding the optimal k-anonymous dataset. That is, one that approxi-

mates the original data the best. [26] showed that this task is in fact

NP-hard, although it admits a O(k logk) approximation with run-

ning time exponential in k . Later on, [2] obtained a polynomial time

approximation ofO(k)which was improved by [18, 31] to aO(logk)
approximation. Several variants of these algorithms including us-

ing set cover approximations [35]. In addition to these algorithms

with provable guarantees, other work has provided heuristics for

different notions of anonymization. For instance [19] has defined a

heuristic algorithm for k-anonymization of quasi-identifiers based

on the construction similar to that of kd-trees [13]. Other authors

have defined heuristics based on clustering [7, 37]. None of those

methods have provable guarantees in our context.

Another related work to ours is that of [9], which defines the

notion of k-isomorphism in social network graphs. Essentially, a

graph is k-isomorphic if it can be decomposed into a union of k
distinct isomorphic sub-graphs. This notion of anonymity is limited

to social network graphs as the goal is to prevent an attacker from

identifying a user based on the structure of their neighborhood.

Another framework for achieving anonymity is differential pri-

vacy [10]. Unlike k-anonymity, differential privacy provides mathe-

matical guarantees on the amount of information that can be gained

by an attacker that observes a differentially private dataset. Differ-

ential privacy has been effectively applied for statistics release [11]

and empirical risk minimization [8] among many other scenarios.

The vast majority of differential privacy examples require the mech-

anism to output a summarized version of the data: a statistic or a

model in the case of risk minimization. To release a full dataset in

a differentially private manner, [16] introduces the notion of local

differential privacy. Local differential privacy allows us to release a

full dataset while protecting the information of all users.

Methods from differential privacy have also been used for the

release of private graph information. For instance, Nissim et al.

[30] shows how to compute the minimum spanning trees and the

number of triangles in a graph. Eliáš et al. [12] recently showed

how to preserve cuts in graphs with differential privacy.

Kasiviswanathan et al. [17] introduce the notions of edge and

node differential privacy in graph settings and show how to cal-

culate functions over graphs under node differential privacy by

capping the number of edges per node. Arguably the work most

related to this paper is that of Nguyen et al. [29]. The authors pro-

pose edge-differential privacy in order to release an anonymous

graph. Similar to our results in Corollary 4.2, the authors show that

a value of ϵ in Ω(logn) is needed in order to achieve non-trivial

utility guarantees, where n is the number of nodes in the graph.

We observe that some work has been devoted to combining

differential privacy with k-anonymity guarantees. Li et al. [23]

show that enforcing k-anonymity in certain data-oblivious ways

on a sub-sampled dataset, is sufficient to show differential privacy

guarantees.

Our algorithmic techniques are related to the lower bounded

facility location problem [3, 14, 33]. This problem has been first

introduced and studied independently by Karget and Minkoff [15]

and Guha et al. [14]. Lower bounded clustering problems have been

motivated by privacy purposes [27]. They both provide bicriteria

approximation algorithms for this problem. Later, Svitkina [33] pro-

vided a 448-approximation algorithm for this problem. This is the

first constant approximation algorithm for this problem. Ahmadian

and Swamy [3] improved Svitkina’s result and give an 82.6 approxi-

mation algorithm for this problem. To the best of our knowledge the

latter is the best approximation algorithm for the lower bounded

facility location problem.

3 SETUP
Given the equivalence of binary matrices and bipartite graphs, for

ease of notation we mostly use graph theoretical terminology to

describe our work.We assumewe are given a bipartite graph, where

one set of nodes corresponds to users and another set of nodes cor-

responds to features. This is a common modeling step, for instance

in location analysis applications the features may represent places

visited; in social network modeling, the features may represent

interests shared by different users; and so on.

LetU = {u1, . . . ,un } denote a set of users and F = { f1, . . . , fm }

a set of features. Throughout the paper we use n and m as the

|U | and |F |, respectively. The edge set E of the graph is defined as

follows, given u ∈ U and f ∈ F , we say e = (u, f ) ∈ E if user u is

associated with item f . We denote this graph byG = (U ∪ F ,E). Let
G denote the space of all bipartite graphs overU ∪ F , a mechanism

M : G → G is a (possibly randomized) function that maps G =
(U ∪ F ,E) to another graph G ′ = (U ∪ F ,E ′) with the same set of

nodes but with possibly different edges. Given two sets A and B we

denote their symmetric difference by A ⊕ B.
We now introduce the different notions of privacy we will be

using throughout the paper.

Definition 3.1. Edge differential privacy. We say a randomized
mechanism M preserves ϵ-edge differential privacy if for any two
graphs G = (U ∪ F ,E) and G ′ = (U ∪ F ,E ′) such that |E ⊕ E ′ | = 1

the following holds for all A ⊂ G:

P(M(G) ∈ A) ≤ eϵP(M(G ′) ∈ A),
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Edge differential privacy implies that the output of a mechanism

does not change too much if a single edge of the input graph is

changed. Thus an adversary that observes the output ofM(G)may

not be able to infer if a single edge was present or not in the graph.

However, if a user has a high degree in G, then the output of

an edge-differentially private algorithm may still leak information

about the presence or absence of that user in the graph. This leads

to a definition of node-differential privacy which we detail below.

Definition 3.2. We say that two graphs G = (U ∪ F ,E),G ′ =

(U ∪ F ,E ′) ∈ G are node neighboring if there exists u ∈ U such
that |E ⊕ E ′ | = |{e ∈ E : e = (u, f ) for f ∈ F } ⊕ {e ∈ E ′ : e =
(u, f ) for f ∈ F }

That is, two graphs are node neighboring if one can be obtained

from the other by replacing all the edges of a single user.

Definition 3.3 (Node differential privacy). We say a mechanism
M preserves node differential privacy if for any two node neighboring
graphs G and G ′ and for all A ⊂ G

P(M(G) ∈ A) ≤ eϵP(M(G ′) ∈ A).

Under this notion of anonymity, it is very unlikely for an adver-

sary to identify a user in a particular dataset. While the above no-

tions of differential privacy provide quantifiable protection against

an attacker, as we will see, they also require adding a non-trivial

amount of noise.

For this reason we revisit an older notion of privacy: k-
anonymity. While the original definition of k-anonymity [34] re-

quires defining quasi-identifiers, in this work we assume that every

feature can be used as a quasi-identifier.

We first introduce some notation. We will consider graphs in

G with fixed node sets U ∪ F , and varying edge sets. Let G =
(U ∪F ,E) ∈ G be one such graph, notice that the graph is identified

by E. For a given edge set E, let Fu (E) = { f ∈ F : (u, f ) ∈ E} be the
items associated with u in the set edge set E. Notice we can then

partition users into equivalence classes. Formally, let

Cu (E) = {u ′ ∈ U |Fu (E) ≡ Fu′(E)}.

Now we are ready to formally define k-anonymity by suppression.

Definition 3.4 (k-anonymization and k-anonymization by sup-

pression). A mechanism M is k-anonymous if for any graph G =
(U ∪ F ,E) ∈ G,M(G) = (U ∪ F ,E ′) satisfies:

(1) For every u ∈ U , |Cu (E ′)| ≥ k .
The mechanism M is k-anonymous by suppression if it also satisfies

(1) E ′ ⊂ E

That is the set of items associated with each user in the out-

put graph, is the same of that of at least k users. Moreover, in

k-anonymity with suppression the output set of edges E ′ needs
to be a subset of E. Notice that with a k-anonymous output an

adversary can only distinguish a user up to a set of k different

people.

Finally, we introduce our variant of the above definition.

Definition 3.5 (smooth-k-anonymity). AmechanismM is smooth-
k-anonymous if for any graph G = (U ∪ F ,E) ∈ G, M(G) = (U ∪

F ,E ′) satisfies:
(1) For every u ∈ U , |Cu (E ′)| ≥ k .

Figure 1: Depiction of k-anonymity with suppression and
smooth-k-anonymity for k = 4. (left) Original input graph
G. (center) k-anonymous with suppression graph. Notice the
removal of the edges to the first and last feature. (right)
smooth-k-anonymous graph, we preserve the edges to the
first feature and add a new edge to it.

(2) For every u ∈ U , and every f ∈ F , (u, f ) ∈ E ′ implies |{u ′ ∈
Cu (E

′) : (u ′, f ) ∈ E ′}| ≥ |Cu (E′) |/2

This definition is very similar to Definition 3.4. The main dif-

ference between the definitions is that a smooth-k-anonymous

mechanism is only allowed to add edges to the output if, for each

equivalence class of users and each item connected to them, the ma-

jority of such edges belong to the original graph. Figure 1 we depict

the difference between our smooth-k-anonymous and k-anonymity

with suppression.

We conclude this section by defining the utility measure of a

mechanism. In order for a mechanism to be useful it should preserve

as much as possible of the graph structure. In this paper we measure

this by the Jaccard similarity of two graphs.

Definition 3.6. Given two graphsG = (U ∪ F ,E),G ′ = (U ∪ F ,E ′)

we denote the Jaccard similarity of them by J (G,G ′) :=
|E∩E′ |

|E∪E′ |
.

4 COMPARISON OF PRIVACY NOTIONS
Here we introduce the new algorithmic problem of finding the best

smooth-k-anonymization of a graph. For this reason, in this section,

we provide some comparison between smooth-k-anonymity and

alternative privacy notions that can be used for data release.

4.1 Comparison with differential privacy
Node differential privacy As we have briefly discussed, node-

differential privacy provides the best theoretical guarantees for

privacy protection. In the specifics of our setup, node-differential

privacy is equivalent to the so-called local differential privacy [16],

where every user is acting separately without coordination from

some global authority.

Let G = (U ∪ F ,E), borrowing from local differential privacy

ideas, one way of achieving node differential privacy is by releasing

M(G) = (U ∪ F ,E ′) built according to Algorithm 1. The algorithm

is parameterized by a randomized response probability p. It is not
hard to show that in order to achieve ϵ-node differential privacy
p = 2

1+e
ϵ
|F |

. Notice that this value converges to 1 exponentially

fast as a function of the size of the feature set F . That is, even for

relatively small graphs, in order to achieve any meaningful privacy

guarantee, the probability of returning a completely random graph

is very close to 1. For this reason, this notion is not amenable to be

used with good utility in our setting.

Edge differential privacy Algorithm 1 can also be used to

define a mechanismM that is edge differential privacy. In that case
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Algorithm 1 Randomized response

Input: G = (U ∪ F ,E), randomized response prob. p
Output: anonymized graph G ′ = (U ∪ F ,E ′).
for u ∈ U , f ∈ F

Sample Y ∼ Bernoulli(p)
if Y = 1 then (u, f ) ∈ E ′ with probability 1/2.

else if (u, f ) ∈ E then (u, f ) ∈ E ′
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Figure 2: The ϵ necessary for a given Jaccard, as a function
of density

.

one can achieve ϵ-edge differential privacy by setting p = 2

1+eϵ
(see the supplementary material).

In this section fist we consider Algorithm 1 as a natural way to

provide differential privacy and upper bound the Jaccard similar-

ity of the input and the output graphs of this algorithm. Later in

this section we show that a similar bound holds for all differential

privacy algorithms.

We now upper bound the similarity of the output of the algorithm

with ϵ-edge differential privacy. The bound depends on the density λ

of the graphG defined as: λ(G) = |E |
|U | |F | . The proof of this theorem

is available in the supplementary material.

Theorem 4.1. Let G = (U ∪ F ,E) ∈ G be a graph, δ > 0. LetM
be a mechanism that generates a graph according to Algorithm 1 with

p = 2

1+eϵ . Let Q = |U | |F | and C(δ ) = log(2/δ )
2

. If p
4
≥

√
C(δ )
Q , then

with probability at least 1 − δ :

J (M(G),G) ≤
1 − 1

eϵ+1

1 + 1

eϵ+1
1−λ
λ

+ 2

√
C(δ )

Q
,

where λ := λ(G).

Using Theorem 4.1, we can plot in Figure 2 a lower bound for

the ϵ needed to achieve a certain level of Jaccard similarity utility,

given a density factor λ. Notice that for reasonably sparse datasets,

say graphs with density around 1/10,000, one needs an ϵ higher

than 10 to obtain a Jaccard Similarity of more than 50%. This result

will be confirmed in Section 6 in our empirical analysis.

The previous Theorem allows us to derive the following.

Corollary 4.2. If the average degree is O(m0.99), for any ϵ ∈

o(logm), ϵ-DP gives a solution with Jaccard similarity of o(1).

This means that, when the average user-degree is poly-

logarithmic (or even m0.99
) we need ϵ ∈ Ω(logm) to achieve a

constant Jaccard similarity with ϵ-edge differential privacy. It is
well-known that many real-world datasets are sparse. For instance

in the context of real-world networks, classical theoretical mod-

els [4] as well as empirical studies [5, 20] postulate constant average

degree or degrees growing slower than the size of the graph.

The above results show that using randomized response, any

differentially private approximation to a graph with high utility

requires an exceptionally large value of ϵ , thus rendering void any

privacy guarantees. Later in Theorem 4.3 we show a similar bound

on ϵ for all differentially private algorithms. In fact, for such a

high ϵ , the algorithm likely maintains the graphG unmodified thus

exposing users to re-identification risks. For this reason we believe

k-anonymity might in fact provide better protection in practice,

especially in scenarioswhere our goal is to produce a private version

of the input graph with high utility.

Unfortunately, however, all of the previous work [2, 18] provide

non-trivial guarantees on the quality of a k-anonymous mechanism

only when J (E,EOpt) ≥ 1 − O( 1

logk ), in other words when very

few edges need to be removed, as the similarity between the graph

and the optimal k-anonymous graph is very high. By contrast, we

show in Section 5 one can achieve a constant approximation to the

optimal smooth-k-anonymous solution in less restrictive scenarios.

Hardness of Differential Privacy So far in this section we

analyzed randomized response and show that this mechanism re-

quires an unacceptably large ϵ . One may ask if there is any other

ϵ-differential privacy mechanism with a small ϵ that guarantees

the output to be similar to the input. The following theorem rules

out the existence of such a mechanism.

Theorem 4.3. Let M be an arbitrary mechanism that satisfies
ϵ-edge differential privacy. Let α be a parameter such that for any
input graph G = (U ∪ F ,E), we have α ≤ E[J (M(G),G)]. We have
ϵ ∈ Ω

(
log(α2nm)

)
.

Proof. To prove this first we define a policy M(G) based on

M(G), such thatM(G) is

• an ϵ-differentially private mechanism,

• E[J (G,M(G))] ≥ α
2
, when |G | ≥ l = ⌊(nm)0.9⌋, and

• |M(G)| ≤ 2(l+1)
α .

The third property bounds the range of |M(G)| and allows us to

analyzeM(G) and bound ϵ . We define policyM(G) based onM(G)
as follows:

• If |M(G)| > 2(l+1)
α then M(G) is set to empty graph,

• otherwiseM(G) =M(G).

Note thatM(G) can be exactly calculated givenM(G), henceM(G)
is an ϵ-differentially private policy as well. Moreover, note that

when |M(G)| > 2(l+1)
α we have

J (G,M(G)) =
|G ∩M(G)|

|G ∪M(G)|
≤

|G ∩M(G)|

|M(G)|
<

α

2

|G |

l + 1
. (1)

Hence, for a graph G with |G | ≤ l + 1 we have

E[J (G,M(G))] =E[J (G,M(G))] − E[J (G,M(G)) − J (G,M(G))] ≥

α − E[J (G,M(G)) − J (G,M(G))] ≥ (By def. )
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α − E[max(0,
α

2

|G |

l + 1
)] ≥ (By Ineq. 1)

α

2

. (By |G | ≤ l + 1)

Consider the following two equivalent random processes to con-

struct random graphs G = (U ∪ F ,E) and G ′ = (U ∪ F ,E ′).

• Select l pairs of nodes from U × F uniformly at random

without replacement. Add an edge between each selected

pair in both D and D ′
. Select one other pair of nodes from

U × F uniformly at random without replacement, denote it

as (u, f ), and add an edge between u and f in D ′
.

• Select l + 1 pairs of nodes from U × F uniformly at random

without replacement. Add an edge between each selected

pair in both D and D ′
. Select one of the edges in D uniformly

at random, denote it as (u, f ), and remove it from D.

Note that,G is a graph chosen uniformly at random from all graphs

onU ×F with l edges, andG ′
is a graph chosen uniformly at random

from all graphs on U × F with l + 1 edges. Moreover, (u, f ) is both
an edge selected uniformly at random from the edges insideG ′

and

it is an edge selected uniformly at random from the edges that are

not in G.
Recall that, by definition, we have

α

2

≤ E
[
J (M(G ′),G ′)

]
= E

[
|M(G ′) ∩G ′ |

|M(G ′) ∪G ′ |

]
≤ E

[
|M(G ′) ∩G ′ |

|G ′ |

]
=

E
[
|M(G ′) ∩G ′ |

]
|G ′ |

.

Note that, if we select one of the edges of G ′
uniformly at random,

it exists in M(G ′) with probability at least

E
[
|M(G′)∩G′ |

]
|G′ |

≥ α
2
.

Hence, we have (u, f ) ∈ M(G ′)with probability at least α
2
. Let S be

the set of all possible outputs ofM(G ′) where the (u, f ) ∈ M(G ′).

By the definition of differential privacy we have

Pr
(
M(G ′) ∈ S

)
≤ eϵPr

(
M(G) ∈ S

)
,

Which means

Pr
(
M(G) ∈ S

)
≥ e−ϵPr

(
M(G ′) ∈ S

)
≥

αe−ϵ

2

.

Thismeans that (u, f ) ∈ M(G)with probability at least αe
−ϵ

2
. Recall

that, by definition (u, f ) is an edge chosen uniformly at random

from the edges that do not exist inG . Hence, if we select one of the

edges that do not exist in G, it exists inM(G) with probability at

least
αe−ϵ
2

.

On the other hand, similar toG ′
, if we select one of the edges of

G uniformly at random, it exists in M(G) with probability at least

α
2
. Hence, we have

E[|M(G)|] ≥ (nm − l)
α

2

e−ϵ + l
α

2

≥
nmαe−ϵ

2

.

Recall that by construction we have |M(G)| ≤ 2(l+1)
α . This together

with the above inequality gives us
nmαe−ϵ

2
≤

2(l+1)
α . This implies

ϵ ≥ log
α 2nm
4(l+1) ∈ Ω

(
log(α2nm)

)
, as claimed. □

4.2 Comparison with k-anonymity by
suppression

In this section we compare k-anonymity by suppression with

smooth-k-anonymity. First, in terms of privacy, we notice that

both smooth-k-anonymity and k-anonymity by suppression guar-

antee that every user in the output is indistinguishable from at

least k-users. Moreover, observe that since smooth-k-anonymity is

allowed to add edges to the output graph, an attacker would not be

certain whether an edge was in the original graph or not.

We now show formally that the optimum solution of smooth-k-
anonymity may preserve a significantly larger fraction of the input

data than regular k-anonymity. To show this separation rigorously,

we adopt the bipartite stochastic block model (SBM), which is com-

monly used in modeling applications, for instance in clustering and

community detection [1].

Bipartite Stochastic Block Model. To define the bipartite

SBM, consider the following random process. We have two sets of

n vertices, and each set is further decomposed into r blocks of size
s , where r · s = n. Each block in the first part corresponds to one

block of the second part. There is an edge between each pair of ver-

tices in two corresponding blocks independently with probability

q, and between every other pair of vertices with probability p. We

let α = qs denote the expected number of edges that one node has

to its corresponding block, a.k.a. internal edges. We let β = p(n − s)
denote the expected number of edges that one node has to vertices

other than its corresponding block, a.k.a. external edges. We refer

to this as the stochastic block model with parameters r , s,α , β .
The result that we provide in this section is of particular interest

when the blocks are not very sparse, i.e., α ∈ ω(
logn
log 1/q ) and α ∈

Ω(β + s).
The next theorem upper bounds the number of edges in a (non-

smooth) k-anonymous subgraph of a graph generated by the sto-

chastic block model byO(n
logn
log 1/q ). Therefore, since α ∈ ω(

logn
log 1/q ),

the fraction of remaining edges tends to zero. The proof of this

theorem is presented in the supplementary material.

Theorem 4.4. Let G be a graph generated by the stochastic block
model with parameters r , s,α , β . Let k ≥

2 logn
log 1/q . With probability

99%, any k-anonymous subgraph of G contains at most 2 logn+10
log 1/q n ∈

Õ(n) edges.

This allows us to show a gap with smooth-k-anonymization. In

fact, a natural solution that puts the vertices of each block in a clus-

ter leads to a solution for smooth-k-anonymity that in expectation

keeps αn edges, adds (s − α)n edges, and removes βn edges. Since

α ∈ Ω(β + s), the number of remaining edges αn is not less than

a constant factor of the changed edges. This result concerns the

optimum solution, but in the next section we provide an algorithm

for computing smooth-k-anonymization of a graph.

5 ALGORITHMS AND ANALYSIS
In this section we develop algorithms that find a smooth-k-
anonymization ofG. We say an algorithm alд is α-approximation

if J (E,Ealд)/J (E,EOpt) ≥ α , where Ealд is the output of alд, EOpt
is the optimal solution, and J (·, ·) is the Jaccard similarity function.

Our main contribution is captured by the following theorem.
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Theorem 5.1. Assume J (E,EOpt) ≥ 0.75. There exists an algo-
rithm that finds a constant approximate smooth-k-anonymization of
G in polynomial time.

At a high level, our algorithm decomposes the users into clusters,

each of size at least k . Then in each cluster c , for each item f , if the
majority of the vertices in c have an edge to f , it adds edges to f
from all nodes in c; otherwise it removes the edges to f from all

nodes in c .

5.1 Preliminaries
Let us start with some preliminary notions and lemmas. We will

abuse notation slightly, and for a user u and item f , say u ∈ f if

there is a (u, f ) edge in the graph.

Note that we can represent each user u with a point in a m
dimensional space. For an item fi , we set the i-th dimension of

u’s representation to 1 if u ∈ fi and to 0 otherwise. In this space

we define the distance of two points, u and v to be the number of

positions where u and v differ (i.e. their Hamming distance).

Let ∆
Alg

u be the number of positions that the algorithm Alg

changes in the binary vector corresponding to the useru. Intuitively,∑
u ∆

Opt

u should be related to J (E,EOpt). The following lemma for-

malizes this intuition.

Lemma 5.2. Assume J (E,EOpt) ≥ 1 − ϕ. We have
∑
u ∆

Opt
u ≤

2ϕ
1−ϕ |E |.

All proofs from this section are in the supplementary material.

To complement Lemma 5.2, the following lemma lower bounds

J (E,E
Alg

) given an upper bound on

∑
u ∆

Alg

u .

Lemma 5.3. Assume
∑
u ∆

Alg
u ≤ ϕ ′ |E |. We have J (E,EAlg) ≥ 1−

ϕ′

2
.

5.2 Initial algorithm
We now provide an approximation algorithm using a reduction

to lower-bounded r -median1. In the next subsection we improve it

using a slightly more complicated algorithm.

In the lower-bounded r -median problem we are asked to select

at most r centers from n points and assign each point to one center

such that (i) the number of points assigned to each center is at least

k , (ii) the total distance of the points from their assigned centers is

minimized.We refer to each set of the points that are assigned to the

same center as a cluster. In this paper we let r = n/k , which means

that the algorithm may use as many centers as it needs, however, it

must assign at least k points to each center
2
. Here we use a 82.6

approximation algorithm for lower-bounded r -median [3], which

is the best known result to the best of our knowledge. We refer to

this algorithm as Alg
1
.

(1) Embed each user in Rm as described at the beginning of this

section.

(2) Approximately solve the lower-bounded r -median on the

points (for r = n/k).

1
We use r -median instead of k -median to avoid the confusion with the parameter k
in k -anonymity. We will use r as the upper bound on the number of clusters and k as

the lower bound for the size of the clusters.

2
This means there are at most n/k centers.

(3) For each cluster c , for each item f , if most vertices in c have
an edge to f , add all edges from nodes in c to f , otherwise
remove all edges from nodes in c to f .

Note that by definition of lower-bounded r -median, each cluster

contains at least k points. Moreover, the data that we output for

users that belong to the same cluster are the same. Hence, the output

satisfies the anonymity part of the smooth-k-anonymity condition.

Moreover, the output satisfies the majority part of the smooth-

k-anonymity assumptions. Next we bound J (E,E
Alg

1

) assuming

J (E,EOpt) ≥ 1 − ϕ.
For analysis sake, we introduce the relaxed lower-bounded r -

median problem in which we are allowed to select any possible

discrete point in the space as a center (as opposed to being restricted

to select centers only from the points that appear in the input). Note

that, if we take a solution to relaxed lower-bounded r -median and

move each center to its closest point (that appears in the input), by

triangle inequality the cost of the solution increases by at most a

factor 2. Therefore the cost of lower-bounded r -median is at most

twice that of relaxed lower-bounded r -median.

By Lemma 5.2 we have

∑
u ∆

Opt

u ≤
2ϕ
1−ϕ |E |. We now prove there

exists a solution to relaxed lower-bounded r -median with cost at

most
2ϕ
1−ϕ |E |. Take an optimal anonymous solution and consider

the equivalence classes of nodes with the same neighborhood. This

induces a clustering of the nodes with clusters of size at least k .
Now, observe that the total number of entries changed is equal to

the sum of distances from the output neighborhood (of each class)

and the original nodes. So this shows that there exists a clustering

with sizes at least k with total cost

∑
u ∆

Opt

u .

Therefore, there exists a solution to lower-bounded r -median

with cost at most
4ϕ
1−ϕ |E |. Note that we are using an 82.6-

approximation algorithm to find lower-bounded r -median. Hence,

the total cost of our solution is at most
330.4ϕ
1−ϕ |E |. The last line of the

algorithm does not increase the total cost (since it selects the best

center for each cluster). Hence we have

∑
u ∆

Alg
1

u ≤
330.4ϕ
1−ϕ |E |. By

applying this to Lemma 5.3 we have J (E,E
Alg

1

) ≥ 1 −
165.2ϕ
1−ϕ . This

is a positive constant for any ϕ ≤ 0.006. This implies the following

theorem.

Theorem 5.4. Assume J (E,EOpt) ≥ 0.994. There exists an algo-
rithm that finds a constant approximation smooth-k-anonymization
of G in polynomial time.

Of course, having J (E,EOpt) ≥ 0.994 is a very strong assumption.

Next we substantially relax this requirement.

5.3 Improved algorithm
To prove a better algorithm we will use the 1.488 approximation

algorithm for the metric facility location problem [24] as a sub-

routine. In the metric facility location problem we are given a set

of points and a set of facilities in a metric space, with an opening

cost for each facility. The objective is to select a set of facilities

and assign each point to a facility such that the total cost of the

selected facilities plus the total distance of the points from their

assigned facilities is minimized. Again here, we refer to the set of

points assigned to each facility as a cluster.
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Below is our algorithm Alg
2
. This algorithm depends on a pa-

rameter α that we set later.

(1) Embed each user in Rm as before.

(2) For each user ui define a facility with the same coordinates

and opening cost
2α
1−α

∑
u′∈U k

i
Dist(u ′,ui ), where U

k
i is the

set of k closest points to i .
(3) Approximately solve the facility location instance.

(4) Iteratively, remove each cluster with fewer than αk points

and assign its points to their second closest facility.

(5) Arbitrarily merge clusters with size less than k to reach size

k , but do not let the clusters grow larger than 2k . 3

(6) For each cluster c , for each item f , if most vertices in c have
an edge to f , add all edges from nodes in c to f , otherwise
remove all edges from nodes in c to f .

Theorem 5.5. Assume J (E,EOpt) ≥ 0.75. Algorithm Alg
2
run

with an α ∈ O(1) finds a constant approximation to smooth-k-
anonymization of E in polynomial time.

Proof. Svitkina [33] showed that Lines 2 to 5 gives solution in

which (i) the size of each cluster is at least αk , and (ii) the cost of the
solution is at most 1.488· 1+α

1−α times that of lower-bounded r -median.

Similar to our previous algorithm, since the size of each cluster

is at least k , the last line of the algorithm guarantees smooth-k-
anonymity. Next we bound J (E,E

Alg
2

) assuming J (E,EOpt) ≤ 1−ϕ.

We refer to the first four lines of algorithm Alg
2
as Alg

′
2
. Similar

to the previous subsection we know that there exists a solution to

lower-bounded r -median with cost at most
4ϕ
1−ϕ |E |. Therefore the

cost of the solution to the facility location problem is at most

5.952 ·
1 + α

1 − α
·

ϕ

1 − ϕ
|E |.

Again similar to the previous subsection and by applying Lemma

5.3 we have

J (E,E
Alg

′
2

) ≥ 1 − 2.976 ·
1 + α

1 − α
·

ϕ

1 − ϕ
.

Later we show that Line 5 decreases the Jaccard similarity by at

most a factor
α 2

8
. Hence we have

J (E,E
Alg

2

) ≥
α2

8

(
1 − 2.976 ·

1 + α

1 − α
·

ϕ

1 − ϕ

)
,

which is a positive constant for ϕ ≤ 0.25 and α = 0.004. This

implies Theorem 5.5.

New we show that Line 5 decreases the Jaccard similarity by a

factor of at least
α 2

8
. To prove this, we use the probabilistic method.

For each cluster we show a random point such that if we move

the points in each cluster to its corresponding random point, the

expected Jaccard similarity is at least
α 2

8
times that of the initial

Jaccard similarity. This implies that there exists a fixed (i.e., deter-

ministic) set of points such that if wemove the points in each cluster

to its corresponding fixed point, the expected Jaccard similarity is

at least
α 2

8
times that of the initial Jaccard similarity. Note that, for

each cluster, we are selecting the optimum center, and hence this

statement holds for our selected centers as well.

3
If needed, break a large cluster into some clusters of size at least αk , so that the total

size of small clusters is more than k . This modification does not change the proof.

Let Einit be the edge set corresponding to the clustering prior to

Line 5. For each merged cluster we select the center of one of its

initial clusters uniformly at random. Note that each merged cluster

contains at most 2/α initial clusters. we select the center of each

initial cluster with probability at least α/2. This means that each

edge that exists in E ∩ Einit exists after merging the clusters with

probability at least α/2. Hence, the expected number edges that

exists after merging is at least
α
2
|E ∩ Einit |.

Moreover, the number of nodes in each initial cluster is at most

αk
2k fraction of that of the merged cluster. Hence, the total number

of edges increases by a factor of at most 2/α after merging and mov-

ing the point to the random centers. Hence, the expected Jaccard

similarity after the merge is at least

α
2
|E ∩ Einit |

2

α |Einit | + |E |
≥

α
2
|E ∩ Einit |

2
2

α |E ∪ Einit |
=

α2

8

|E ∩ Einit |

|E ∪ Einit |
,

as claimed. This completes the proof of Theorem 5.5. □

6 EXPERIMENTAL RESULTS
We give a brief overview of the empirical performance of our al-

gorithms. We give the full details of the setup as well as additional

empirical results in the supplementary material. We will release an

open-source version of our code by the camera-ready deadline.

Datasets We used representative examples of sparse binary ma-

trices (and bipartite graphs) of different origins and structural prop-

erties. The scales of the datasets are up to > 1B rows, > 100k
columns, > 10B entries (for our largest dataset) and the densities of

the matrices range from 10
−5

to 0.1. We used one synthetic dataset,

four publicly-available real-world datasets as well as one large-scale

proprietary dataset from a major internet company. These are as

follows: stochastic is generated from the stochastic block model

described in Section 4.2; adult4 and playstore5 consist of sparse
binary matrices; dblp [36], stanford [21] consists of adjacency

matrices of sparse bipartite graphs and, user-lists is a proprietary
dataset from a major internet company containing user-interest

relationships.

MetricsWemeasure utility using the Jaccard similarity between
the set of the edges as defined in the paper as well as the number

of suppressed entries and created entries.
Experimental infrastructure Our algorithm is implemented

as a single-threaded C++ problem and is run on standard commod-

ity hardware, with the exception of runs on the large-scale user-list

dataset. For this dataset, we evaluated a simple heuristic to par-

allelize our algorithm. (See the supplementary material for more

details.)

Baselines and Algorithms As baselines we use the Mondrian
anonymization algorithm [19] implementation

6
which enforces

k-anonymity by suppression, as well as the randomized response al-

gorithm of Section 4 which enforces ϵ edge- or node-differential pri-
vacy. We also compare our algorithm for smooth k-anonymization

with an additional baseline non-smooth (which uses a simple heuris-

tic to obtain (standard) k-anonymity by suppression using the clus-

ters obtained by our algorithm). Our algorithm is always run with

4
https://archive.ics.uci.edu/ml/datasets/adult

5
https://www.kaggle.com/lava18/google-play-store-apps

6
https://github.com/qiyuangong/Mondrian

https://archive.ics.uci.edu/ml/datasets/adult
https://www.kaggle.com/lava18/google-play-store-apps
https://github.com/qiyuangong/Mondrian
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Figure 3: Mean Jaccard similarity for the various datasets and algorithms.
.

dataset algorithm Jaccard Supp. Created

adult mondrian 59.9% 40.1% 0.0%

non-smooth 64.8% 35.2% 0.0%

smooth 85.0% 8.9% 7.2%

playstore mondrian 51.2% 48.8% 0.0%

non-smooth 39.2% 60.8% 0.0%

smooth 66.1% 26.2% 11.6%

user_lists non-smooth 67.3% 32.7% 0.0%

smooth 71.0% 27.7% 1.9%

Table 1: Average results for k = 8 for various algorithms and
dataset. Jac., S.E. andC.E. stand for, respectively, Jaccard sim-
ilarity and fraction of suppressed entries and newly created
entries (both normalized by the entries in the input dataset).

α = 1/2, which in practice gives good results for all datasets (we

observe that values of α in [1/8, 1/2] have similar results).

Jaccard similarity vs k First, we evaluate the quality of our

algorithm for smooth k-anonymity for different k values and we

compare it with that of the (non-smooth) k-anonymity solution and

mondrian. In Figures 3(a) and 3(b) we show a sample of plots of the

mean Jaccard similarity for a given setting of the k parameter for

smooth k-anonymity (solid line), non-smooth anonymity (dashed

line) and mondrian (dotted). We were not able to run the mondrian

algorithm on the larger datasets because, contrary to our algorithm,

it scales with the size of the full n ×m matrix size (m number of

columns) and it does not exploit the sparsity of the matrix. As

expected, the Jaccard similarity decreases with increasing k , but at
every k level smooth k-anonymity allows to obtain significantly

better results than all baselines (in some cases even twice better).

We report more detailed results in Table 1 for k = 8. Notice that our

smooth algorithm allows significantly higher jaccard similarity (and

lower suppressed entries) for a small increase in created entries. For

instance, in adult, the number of suppressed entries is decreased

by ∼ 26% with just a ∼ 7% increase in added entries.

Differential privacy We now evaluate the Jaccard similarity

obtained by the ϵ-differentially private method. We report the re-

sults in Figure 3(c). Here we report results for the lower protection

level of ϵ-edge differential privacy, as ϵ-node differential privacy
protection generates results close to random outputs. As expected

(see Section 4) the sparser the dataset the worse the performance
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Figure 4: Accuracy in learning task in anonymous data . We
also include a baseline of using only the majority label as
well as training a model without anonymity and a model
that uses node differential privacy with ϵ = 10

of differential privacy at parity of ϵ . Notice how to get Jaccard

similarity above 0.5 in stanford or dblp, ϵ must be 10 which is too

large to provide strong guarantees. We can use these results to

compare k-anonymity and ϵ-differential from their a standpoint.

We observe that depending on the dataset an anonymity of k = 16

might require an ϵ as large as 11 to obtain the same utility.

Learning from anonymous data Finally, we report results on

using the anonymized datasets in a downstream machine learning

task. We use the anonymized version of the adult dataset to learn a

classifier for the standard classification task of predicting whether

an adult’s income is ≥ $50k per year. The results are reported in

Figure 4. Notice our algorithm performs better (or on par) with

the best baseline (mondrian). We observe (see the supplementary

material) that smooth performs significantly better than the ϵ-node
differentially private algorithm with ϵ = 10 even for k = 200,

mirroring the degradation seen in the Jaccard similarity metric.

7 CONCLUSION
We presented a new notion of anonymity which relaxes standard k-
anonymity and allows us to obtain better guarantees and improved

results in downstream machine learning tasks. Our algorithms re-

duce the anonymization problem to clustering with lower bounds

and require non-trivial analysis to prove approximation guaran-

tees. Many interesting questions remain, including strengthening

our bounds for smooth k-anonymity and better understanding the

interplay between the various notions of privacy.
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